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This paper presents a numerical method that simulates the melting process in the presence 
of solid-liquid density change and natural convection in the melt. The physical model 
concerned is two-dimensional melting of a phase-change material, initially at its fusion 
temperature, charged in a rectangular cavity with isothermally heated side walls and an 
adiabatic bottom wall. The presence of the density change brings no change into the basic 
form of governing equation, so it is considered through the reformulation of boundary 
conditions. Difficulties associated with the complex time-dependent melt region, whose 
shape is also a part of the solutions, are overcome by employing the boundary-fitted 
coordinate system. Comparison with other works validates the present numerical model 
and reveals the effects of density change qualitatively. Also, it is confirmed that the present 
method is preferable to others with natural convection only. Computed results for 
interesting cases are shown in forms of transient position of the interface, temperature 
distribution, f low pattern, heat transfer coefficient, and melting fraction as a function of 
time. Closer examination on melting patterns allows a correlation to be made between 
the melting fraction and a new independent variable Ste. Fo. Ra 1/4. 
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I n t r o d u c t i o n  

Phase-change heat transfer is important in a wide range of 
technical processes such as casting, welding, energy storage, 
development of polar regions, and so on. Therefore, many 
problems concerning melting or solidification for various 
geometries and thermal conditions have been investigated. After 
some earlier experiments 1'2 showed that natural convection in 
the melt is the primary heat transport mechanism throughout 
the phase-change process, most numerical studies have concen- 
trated on the coordinate transformation techniques not only 
to consider its effect in the analysis but to circumvent the 
computational difficulties due to the irregular-shaped moving 
boundaries. Works by Saitoh, 3 Hsu et al.,4 Rieger et al.,~ and 
others belong to this class and a comprehensive discussion on 
them is available elsewhere. 6 

In addition to the natural convection, solid-liquid density 
change is another important factor that has influence on the 
phase-change heat transfer. The significance of the phase- 
change process has been pointed out by some researchers in 
experimental studies. Sparrow and Broadbent 7 showed that the 
volume-change-driven motion played a dominant role at an 
early stage of melting and interacted with natural convective 
motion as melting proceeded. Also, He and Viskanta a attributed 
one ofthe disagreements between the experimental and numerical 
results to the omission of the density-change effect in simulation 
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and noted that its effect could not be neglected in the analysis. 
The first investigation to take this factor into account in 
the analysis was made by Shamsundar and Sparrow, 9 where 
only pure conduction was considered as the heat transport 
mechanism. To make a better prediction on the heat transfer 
characteristics during melting or solidification, it is obvious 
that not only natural convection in the melt but the density 
change should be included in the analysis. However, there have 
been few attempts to do so. This work, motivated by this fact, 
investigates a melting process in the presence of both natural 
convection and the density change. 

Since the consideration of the density change brings no 
additional change into the basic forms of governing equations 
except that of boundary conditions, a numerical method that 
was developed for the analysis with natural convection only 
may be applied by the appropriate reformulations or modifi- 
cations of boundary conditions. In previous work by the present 
authors, t° a coordinate transformation technique using a 
boundary-fitted coordinate system was proposed and applied 
to the inward melting with natural convection in a horizontal 
tube successfully. This method is employed in the present study. 
The physical model to be treated in this work is a two- 
dimensional (2-D) melting of a phase-change material (PCM), 
initially at its fusion temperature, charged in an open-top 
rectangular cavity with isothermally heated side walls and an 
adiabatic bottom wall. To allow the free expansion resulting 
from liquid to solid, the top surface of the PCM is regarded 
as insulated by air. Although air, of course, is not a perfect 
insulator, the assumption should be good enough for the 
purpose of the present problem. In view of the fact that there 
have been few experiments involving the density change effect 
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reported, the experimental and corresponding numerical results 
by Ho and Viskanta s are a good reference for comparison. 

A n a l y s i s  

Physical mode l  and governing equations 

As shown in Figure 1, initially solid-phase PCM at its fusion 
temperature T I is charged at a height of H in a rectangular 
cavity with unit length in depth. From time t = 0 side walls 
are maintained at temperature T,~, which is higher than T I, 
while the bottom and top are kept adiabatic. Melting begins 
along the side walls by heat conduction, but soon the excess 
volume generated along the solid-liquid interface moves upward 
to find extra space to fill and forms a free surface over the solid. 
As the melt layer grows, natural convection begins to develop 
and accelerates melting. In Figure 1 it can be seen that the level 
of PCM is slightly higher than the initial height, H. 

Since the temperature of the solid is assumed to be that of 
fusion, the domain to be analyzed becomes the melt region 
bounded by the interface, bottom wall, side wall, free surface, 
and line of symmetry. Although the flow in the melt may 
actually be three-dimensional, a 2-D mathematical model is 
considered in this work. For simplicity the following assump- 
tions are made: 

• the Boussinesq approximation is valid; 
• the fluid is Newtonian and incompressible; 
• the flow is laminar and 2-D; 
• viscous dissipation is neglected. 

Figure I 
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Then, nondimensionalized governing equations in vorticity- 
stream function formulation on Cartesian coordinates become 

Ste. o~, + V. Vo~ = Pr V2~o + Ra Pr 0~ (1) 

- o ~  = V ~  (2) 

Ste.0, + V. VO = V20 (3) 

where the nondimensionalized quantities are defined in 
notation. 

At the interface between solid and liquid, the energy balance 
is given by 

0X' 
t~r = h~p~ (4a) 

-k~ dx ~'=x' ~ 

for a one-dimensional ( I -D) case. Here x '  is used to denote 
dimensional coordinate and X'  indicates interfacial coordinate. 
The dimensionless form of the equation becomes 

d0 1 
8 (4b) - -  

dx p* 

where p* and 8 denote density ratio of liquid to solid and 
nondimensional inteffacial velocity. Spatial coordinate, x', and 
inteffacial location, X', are nondimensionalized by the half 
width of the cavity, L to ~ x and X. Extending Equation 4b 
to 2-D form and multiplying ourward unit normal vector, n, 

VO.n = - ~ R~ .n  (4c) p* 

can be obtained. In Equation ~ ,  8~ is the nondimensional 
interfacial velocity. Since the presence of density change makes 
the interface a kind of volume source, the fluid velocity along 
the interface is not zero. Mass conservation for the interface 
gives 

~ = (1 -p*~ Ste R, (5) 
p* 

Complete descriptions of boundary conditions are treated later. 

Coordinate t ransformat ions 

Regardless of the presence of density change, a coordinate 
transformation technique is needed to treat the difficulties 
associated with the complex time-dependent physical domain. 
In this work, the aforementioned b0undary-fitted coordinate 
system is introduced. Mathematical backgrounds and appli- 
cation of these coordinates were reviewed comprehensively by 
Thomson et al. ~ Also, detailed numerical techniques for the 
treatment of the phase-change problems using it can be found 
elsewhere. 6'~° The advantage of this transformation technique 
lies in the fact that any set of equations of interest in physical 
domain may be solved on a rectangular and uniform spaced 
computational grid that is fixed in time. 

The physical domain (x, y) is transformed into computational 
domain (~, r/) by 

~xx + ~ = R(~, q) (6a) 

r/~ + ~/r, = Q(¢, q) (6b) 

where R ( ~ . q )  and Q(~.rl)  are source terms to be chosen. 
Equations 6a and b are equivalent to 

~tx~g - 2flx¢, + 7x,,  = - j 2 ( R x g  + Qx, )  (7a) 

~y¢¢ -- 2fly~, + yy,~ = --JZ(Ry¢ + Qy~) (7b) 

where J = x e y , -  x,y¢ denotes Jacobian transformation and 
~t. fl. and y are combinations of x¢. x~. y¢. and yn as given in the 
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notation. In this paper. R and Q are chosen as 

R = ~b(~, r / ) ( ~  2 + ~2) (8a) 

Q = ~(~, q)(q~ + qy2) (8b) 

following the method of Thomas and Middlecoff. 1~ 
A point P(x, y) at time ~ = za in the physical domain, which 

corresponds to P*(~, r/) in computational domain, as shown 
in Figure 2, is generated by the numerical solution of the 
following system of quasi-linear elliptic partial differential 
equations with Dilichlet conditions along the boundaries: 

~(x¢~ + ~x¢) - 2flx¢, + y(x., + Zx,) = 0 

a(y¢¢ + ~yg) - 2fly¢, + 7(Y,. + ZY,) = 0 

x = xb(~ ,~ )  ( ~ , ~ ) ~ r ~  

y = yb(~,~) 

(9a) 

(9b) 

(9c) 

(9d) 

where functions ~b and Z control the interior grid spacing. 
The specified forms along the boundaries are 12 

~b = - (x~x¢¢ + y¢y¢¢)/7 (10a) 

x = - (x , x , ,  + y~y,~)/y (10b) 

Then. the values at their interior grid points can be obtained 
by simple linear interpolation between a pair of boundary 
curves. For each time step. the same procedure for new 
boundaries should be repeated. The mapping between physical 
and computational domains can be written formally as 

= 

Transformation of original equations into the boundary- 
fitted coordinate system is no more than mathematical manipu- 
lations. Nevertheless, numerical analysis may depend on the 
form of transformed equations. Therefore, it is important to 
examine the adequate form for numerical computation. In this 
work, a geometrically conservative form that is known to 
preserve the physical meaning of each term of equations under 
coordinate transformations 11 is taken with modifications. Then, 
the transformed equations corresponding to Equations I -3  are 
cast in the following form : 

Ste(J~o)~ + (~.o)~ + (~o))~ -- Pr V2~o + Ra Pr[(y.0)~ - (y~0)~] 

(12) 

-J~o = V2~b (13) 

Ste(d0L + (fi0)¢ + (~0), = V20 (14) 

where the differential operator V 2 and the transformed velocity 
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components (fi, ~) are defined as 

= + (15) 

(16a) 

(16b) 

fi = y , ( u  - Ste x . )  - xn(v - Ste y,) 

f~ = xe(v - Ste y,)  - ye(u - Ste x~) 

And, the transformed relation between stream function and 
velocity components becomes 

~ = y~u -- xnv (17a) 

- - ~  = x~v - y~u (17b) 

B o u n d a r y  c o n d i t i o n s  

The major distinction in the analysis with and without the 
density change consists in the boundary conditions, one of 
which was already shown in Equation 4c, Denoting each 
boundary as F~, i = 1, 2, 3, 4, 5 (Figure 3), coordinate lines of 
the boundary-fitted coordinate system correspond as ( = ~mi, 
to P1,17 = ?l.in to F2, ~ = ,~,,,,,, to F3, and 17 = 17,.=~ to F~ + Fs. 

For temperature, boundary conditions on the Cartesian 
coordinate become 

V0-b = 0 at F~, F3, and F5 (18a) 

0 = 0 at 1-2 (18b) 

0=1  at F~ (18c) 

where n is the outward normal vector at each boundary. 
Transformed forms of Equation 18c are expressed as 

• O ¢ - f l O , = O  at F~ a n d F  3 (19a) 

~0~- flO~ = 0 at F~ (19b) 

Since the level of free surface varies due to the density change, 
boundary conditions for stream function are somewhat compli- 
cated. From the definition the following relation is easily 
obtained : 

f r 2 d ~ , = - f r ,  dq, (20) 

Figure 3 

I 
I "1/ 
i_ x L " -;' 
| -  I 

Physical domain of present study 

The reference value of ~k, though it is arbitrary, is taken so that 
~bs at solid walls, F 3 and F~ are zero. Then, ~b at Zp, an arbitrary 
point on 1- 2 , is determined as 

~k=p = 0=2 -- Vi.n dF2 (21a) 
2 

where Vi is given by Equation 5 and 

q'z~ = V,.n dr~ (21b) 
2 

Supposing that the f r~  surface is maintained horizontally, 
the complete set of boundary conditions for stream function 
except the one already derived can ~ s~cified as 

6 = 6,~ at F~ (22a) 

6 = 0  at F~andF~ (22b) 

6 = ( 1 - x ) 6 . ~  at F~ (22c) 

Transformations of Equations 21a and b result in 
¢(zp) ~ 

¢2p= - - ( 1 -  #*).Ste. / - O , d ~ + ~ , 2  (23a) 
J¢.~. g 

t ¢~na~ 7 ~ = (1 - p*).Ste. - O~d~ (23b) 
d emin J 

where the following were used 

[~:]~ = p0. (24a, 

-T J, 
dF~ = 7 ~/~ d~ (24b) 

n = ~ - y ' ~  (24c) 
r~/: L x¢3 

Vorticity at the solid wall that affects the flow field directly 
cannot be s~cified a priori but is obtained as a part of the 
solution. There have ~ e n  a n u m ~ r  of methods ~3 to s ~ i f y  
the vorticity at the solid wall, but no absolute measure of 
selection exists. It de~nds  on the problems concerned. A 
modified form of the method by Gosman et al. ~ has proved 
superior in convergen~ for this problem by numerical analysis. 
Vorticities at the line of symmetry and the f r~  suffa~ can be 
readily dete~ined by definition. ~ e  fin~ f o ~  of the vo~idties 
at the boundaries adopted in this work are 

~ = 0  at F~andFs  (25a) 

~ = - 2 ( ~ ( ~ - f f ~ , - u , )  at F~ (25b) 

/ ~ 

~ - /  

at F3 (25c) 

I v \  

where u,, ~.,,, and ~,,~ denote tangential velocity component 
of f luid at the interface, stream functions at a unit distance 
normal to the wall and at the wall, respectively. 

The above vort icity conditions at the walls can bc derived 
as follows. When we assume that solid boundary is fixed and 
transformed coordinates are orthogonal near solid walls and 
the tangential gradients are much smaller than normal ones at 
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solid walls, vorticity Equation 12 can be approximated as 

0 

where n denotes a normal directional variable. Integrating 
Equation 26 for n and neglecting tangential vel~ity ~, ~ is 
obtained. Another integration gives 

m ~ m~.~ + m~ (27) 

where ~,~ denotes vo~icity at the solid wall. Equation 13, 
vorticity-stream function relation, can ~ integrated similarly 
with the aid of Equation 27 to give 

+  ..TJLT] 
When it is assumed that the vorti~ty is u n i f o ~  near solid 

walls, the following relation is obtained: 

(29, 

~ ~ 

~ ~ 

where W,, denotes stream function at unit len~h, n = I, from 
solid wall. This appli~ for solid boundaries F~ and Fa, and a 
similar relation can ~ obtained for the inteffa~ F~. 

Initial conditions 

Initially, the whole system is in the solid phase so that in physical 
domain the region of liquid phase cannot be defined. However, 
it is possible to start numerical computations by assuming 
melting takes place along the heating wall to the extent of 
sufficiently small gap width. The analytical solution for I-D 
semi-infinite solid yields the position of the interface from the 
wall and temperature distribution. 

That is, 

X = 2K (zo/Ste) 1/2 (30a) 

eft[  (Ste/~o)l/2--~] 

0 = I - (30b) 
eft(K) 

where K is the solution of 

• Ste 
K'exp(K2)'erf(K) = P "~T/i (30c) 

Here To represents a sufficiently short time during which 
conduction heat transfer can be assumed. 

Also, it is assumed that the excess volume generated by the 
density change in this gap moves upward and forms a thin 
liquid layer with the free surface. Then, initial physical domain 
for numerical computation consists of a small liquid gap along 
the heating wall and a connected thin liquid layer over the 
solid. The upper layer is so thin that the initial temperature 
distribution over it can hardly have influence on the later 
behaviors. 

Numerical procedure 

Terms of the transformed governing equation s are similar in 
form and physical meaning to those of originals except the 
cross-differential ones. So, it is possible that a numerical method 
that was originally developed for orthogonal coordinates can 
be applied to this case if the cross-differential terms can be 
handled reasonably. Shyy et al. 15 have explored this fact for 
the analysis of a steady-state laminar flow field in irregular 
geometry. Also, it has been proved to be successful for the 
melting problem by the present authors. 1 o Transformed govern- 
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ing equations and corresponding boundary conditions are 
discretized using the control-volume formulation proposed by 
Patankar. 16 In the actual computation, the cross-differential 
terms have been treated as source terms. 

To avoid a large memory and excess computing time, a 
sequential computation procedure is employed, i.e., for one 
time step computations are performed in the following order: 

(1) computation of (x,, y,) from information at the previous 
time step; 

(2) generation of grid system and computation of the grid 
velocity; 

(3) solution of equations for energy, vorticity, and stream 
function in turn. 

If the solution satisfies a prescribed convergence criterion, 
computations move to the next time step, otherwise step 3 is 
repeated. 

The grid system is structured by (33, 15) nodal points in 
(~, t/) directions. Since the nodes on the boundaries concentrate 
or disperse as the curvature of boundary varies, the rezoning 
process is necessary to maintain the properly structured grid 
system. It was accomplished by the cubic spline fitting of the 
interface and redistribution of nodes on the boundaries at each 
time step. Time increment AT is taken as 10-5 considering the 
numerical instabilities. 

R e s u l t  a n d  d i s c u s s i o n  

Definition of parameters 

Heat transfer during melting may be characterized by the heat 
transfer coefficient at the heating wall. The local wall Nusselt 
number, Nu,~, a nondimensionalized form of the local heat 
transfer coefficient, is defined and expressed on the transformed 
coordinates as 

= 

- -  

The average wall Nusselt number, Nu,~, is defined as an 
average of Nusselt numbers along the boundary of the heating 
surface contacting the PCM. The contacting area or length 
increases due to volume expansion of PCM as the melting 
fraction increases with time. The average wall Nusselt number 
as a function of time can be readily calculated from 

- f (yl/2)'~d~ (32) 

where I represents the total length of walls contacting PCM. 
Melting fraction, ry, is defined as the ratio of mass in liquid 

phase to total mass. The expression for ry ~comes  

r : = ~  p, d x d y = ~  Jd~d~ (33) 

Here the integration covers the region in liquid phase and 
G denotes a s s e t  ratio of H/L. In present computation, G = 2 
is taken. 

Rayleigh n u m ~ r  is used in the analysis. One half width of 
system L, which is invariant, is used as the characteristic length 
for nondimensionalization. 

Effect of density change 

Computations are performed for the eases : one without density 
change and another with a density ratio of p* = 0.95. Corn- 
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parison is made only with the work by Ho and Viskanta. 8 They 
reported experimental data and numerical results obtained 
using the Landau transformation technique without consider- 
ation of the density change. One representative case is chosen 
to compare. Throughout the present study, the ratio of liquid 
to solid density of PCM is fixed at p * =  1 and p * =  0.95. 
The latter can be applied to n-octadecane (Ps = 814, p~ = 
768 kg/m3). 

The melting fractions are illustrated in Figure 4 as a function 
of dimensionless time. The figure shows comparison of the 
melting fractions at Ra = 0.788 × 107 and Ste = 0.063. Two 
solid lines indicate the present calculation of the fractions for 
density ratio p* = 1 (no density change) and p* = 0.95. The 
numerical result of r io and Viskanta s is represented by a dotted 
line, and the symbols are for experimental data by the same 
authors. Analytic solution for melting by pure conduction only 
is also presented as a reference. 

At the initial stage the calculated melting fractions for p* = 1 
agrees well with those of Ho and Viskanta s and pure conduction, 
but a discrepancy appears as time elapses. As time increases, 
the calculated results of Ho and Viskanta fall well below the 
present calculations for p* = 1 and p* = 0.95. This fact was 
already indicated in the scaling theory of melting by Jany and 
Bejan.~7 At the beginning of melting, the density change by 
volume expansion generates an extra movement of liquid to 
accelerate melting. The effect of density change diminishes with 
time although the amount of excess melting fraction remains. 
Figure 4 is redrawn to exclude the conduction term. Normalized 
melting fraction is defined as melting fraction normalized by 
the fraction due to conduction only and is given in Figure 5. 
The calculated result by Ho and Viskanta s is also presented 
for comparison. It is believed that the abrupt increase in 
p* = 0.95 at the very early stage is due to the volume-change- 
driven motion. As the melt gap grows, the relative contribution 
by the excess volume decreases. 
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Figure 6 shows the average wall Nusselt numbers for various 
cases including the data from Ho and Viskanta 8 and the result 
for pure conduction. One of the reasons for the disagreement 
seems to be the subcooling effect in the experiment. According 
to the investigation by Kemink and Sparrow, Is timewise 
variation of the heat transfer coefficient with initial subcooling 
of the solid in the melting process is expressed as lower in 
absolute value and rightward shifted in time compared with 
that without subcooling. The rightward shift may arise due to 
the heat supply condition at the heating wall. The effect of the 
density change on Nusselt number is similar to that of the 
melting fraction in Figure 4. 

Inf luences o f  various parameters 

Since the numerical computations were very time consuming 
in spite of a relatively large time increment and less severe 
convergence criteria, simulations to investigate the influences 
of dimensionless parameters on the melting processes are 
performed for a limited number of cases. Computed results for 
Pr = 5 and 50 were compared first and they coincided exactly 
with each other. This fact meets with the study by Sparrow 
et a1.18 where Pr = 7 and 70 were treated. 

Since the experiments for various geometries have provided 
conclusive evidence that natural convection heat transfer con- 
trois the phase-change processes, the role of the Rayleigh 
number might be important. To reconfirm this fact and get 
the quantitative informations, three cases, Ra = 0.788 × 10 7, 
1.57 × 107, and 2.5 × 107, are compared. As expected, a high 
Rayleigh number accelerates the development of natural con- 
vection decisively. In Figure 7, the local minimum of the average 
Nusselt number at the heating wall, which is known as an 
indication of transition from heat conduction to natural con- 
vection dominant regime 19, appears in advance as the Rayleigh 
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number increases. Although the absolute values of each curve 
are different, the timewise variation trend is similar, i.e., 
following the sharp decrease at early times and the local 
minimum, the Nusselt number increases gradually toward a 
quasi-steady state. This fact represents that increase of Rayleigh 
number that does not bring drastic changes to the melting 
process but advances the onset time of natural convection and 
intensifies it more quickly. The uppermost curve oscillates after 
the time ~ = 11 x 10 -3. If the secondary flows took place in 
the corresponding flow field, this phenomenon can be regarded 
as the transition of the flow regime from a quasi-steady to an 
unstable state, z° In this case, however, it seems to be induced 
by numerical instabilities because there were no secondary 
flows. Probably, a relatively high velocity by a large Rayleigh 
number and coarse grid system compared with wide melt region 
causes the numerical computation to be unstable as the melting 
proceeds. However, it is necessary to study further to clarify it. 

Figure 8 shows normalized melting fraction as a function of 
time for three different Rayleigh numbers in the case of 
p* = 0.95. No further explanation may be needed. 

Flow pattern and temperature distr ibut ion 

Flow patterns and temperature distributions for Ra = 2.5 x 107 
are presented in Figures 9 and 10, respectively. In Figure 9, it 
is worth noting that at an early time the maximum of stream 
function is located near the top of the narrow melt gap along 
the heating wall. As the melting continues, the convective 
recirculating flow is intensified while its maxima move toward 
the center of the melt layer. The corresponding temperature 
profiles (Figure 10) also show this pattern, i.e., parallel isotherms 
are distorted from top to middle of the vertical layer, making 
a larger gradient in the x-direction. 
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Figure 11, timewise change of the interface shape, shows the 
nature of the melting pattern. At the early stage of melting, a 
thin melt layer along the free surface becomes the passage for 
supplying heat to the flat top of the solid, which impels this 
zone to melt and thickens the upper layer. This is consistent 
with the predicted flow pattern and temperature distribution, 
where a temperature gradient normal to the interface is developed 
gradually along the upper part of the solid. In the result, a 
remarkable melting takes place at this part. Here, the primary 
mechanism for heat transport is, of course, the natural con- 
vection. 

Correlation o f  the melt ing fraction: 

One of the most significant results of research on the melting 
process is the melting fraction. If the melting fraction can be 
expressed as a function of a new independent variable regardless 
of changes in the parameters, it will be very convenient for 
practical purposes. As discussed, the influence of Rayleigh 
number was predominant over that of the others. Moreover, 
a similar trend of the melting fraction was preserved when 
Rayleigh number changed. So, it was deduced that the new 
independent variable should be expressed in terms of Rayleigh 
number. It was found to be Ste. Fo. Ra 1/4. Figure 12 shows the 
correlation of the predicted melting fraction with respect to the 
new variable. Curves coincide quite well and the correlation 
functional form is almost linear. 

C o n c l u s i o n  

A numerical study on two-dimensional melting of a PCM in a 
rectangular cavity with isothermally heated vertical side walls 
has been carried out. The solid-liquid density change that 
accompanies phase-change process as well as natural convection 
in the melt was considered in the analysis. To overcome the 
difficulties associated with the time-dependent irregular domain, 
a coordinate transformation technique using the boundary- 
fitted coordinate system was employed. Based on the com- 
parisons of computed results with others and some simulations 
to investigate the influences of parameters, the following are 
clarified : 

• The predictions on the melting behaviors made by the 
present method are physically meaningful and show better 
agreement with the experimental results than those of the 
others. Therefore, the density-change effect should be con- 
sidered in the analysis of the phase-change process to make 
better predictions. 

• The effect of the density change appears clearly at the early 
stage of the process and acts as a kind of supplementary 
means to convey heat from the heating wall to the solid- 
liquid interface combined with natural convection at later 
times. 

• Rayleigh number affects the process most significantly. A 
large Rayleigh number advances onset time of natural 
convection and magnifies its intensity, so that the melting 
is accelerated. 

• For the practical use, a correlation of the melting fraction 
is obtained as a function of Ste. Fo. Ra TM. 
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